\qquad Hour \qquad

Energy Problems- Level 1

1. What is kinetic energy? \qquad
2. What is potential energy? \qquad
3. What is the unit for energy? \qquad
4. If you are not moving, what is your kinetic energy? \qquad
5. If you are standing on the ground, what is your potential energy? \qquad
6. If you double the height you are off of the ground, what happens to your potential energy? \qquad
7. If you double the speed you are traveling at, what happens to your kinetic energy? (Be carefu!!)
\qquad $10 \mathrm{~m} \quad \begin{aligned} & \mathrm{m} \\ & 0 \mathrm{~m}\end{aligned} \quad \begin{aligned} & \mathrm{PE}= \\ & \mathrm{KE}= \\ & \mathrm{PE}= \\ & \mathrm{KE}= \\ & \mathrm{PE}=\end{aligned}$ $\mathrm{KE}=$
8. If you start off with 5 J of K.E. and lose 2 J of K.E., how much P.E. will you gain? \qquad
9. Fill in the energy values for the swinging pendulum It stops at the top.

$$
\mathrm{PE}=10 \mathrm{~J}
$$

$K E=$ \qquad

\qquad
PE = J

At the bottom, $h=0 \mathrm{~m}$.
$\mathrm{PE}=$ \qquad J
11. A 10-lb. bowling ball moves at $3 \mathrm{~m} / \mathrm{s}$.
$K E=$ \qquad J
a. How much K.E. does it have? (ans. 20.5 J)
b. How fast must a $2.45-\mathrm{g}$ ping pong ball move to have the same K.E.? ($129 \mathrm{~m} / \mathrm{s}$)
12. A child slides down a slide that is 2 meters high. Use the conservation of energy to calculate his speed at the bottom assuming he started from rest at the top. (ans. $6.3 \mathrm{~m} / \mathrm{s}$)
(If you do not know how to do this, look in your notes)
G : $\mathrm{hi}=$
$\mathrm{hf}=$
vi=
U: vf=
E: $\mathrm{mgh}_{\mathrm{i}}+1 / 2 \mathrm{mv}_{\mathrm{i}}^{2}=\mathrm{mgh}_{\mathrm{f}}+1 / 2 \mathrm{mv}_{\mathrm{f}}^{2}$ Remember the mass cancels out. $\mathrm{gh}_{\mathrm{i}}+1 / 2 \mathrm{v}_{\mathrm{i}}^{2}=\mathrm{gh}_{\mathrm{f}}+1 / 2 \mathrm{v}_{\mathrm{f}}^{2}$
\qquad Hour \qquad

We will be combining Energy/ Work with Projectile Motion!

$$
\begin{array}{ll}
\text { Horizontal Projectiles: } & V_{i y}=\ldots 0_{1} \quad a_{y}=\ldots-9.8 \mathrm{~m} / \mathrm{sec}^{2} _\quad \text { Do NOT cut the time in } 1 / 2! \\
& \text { The } \mathrm{Vx} \text { is __constant___ because we neglect air resistance (no a) }
\end{array}
$$

These 2 equations work for horizontal projectiles:

$$
\mathbf{v}_{\mathrm{x}}=\Delta \mathrm{x} / \Delta \mathrm{t} \quad \Delta \mathrm{y}=\mathbf{v}_{\mathrm{iY}} \Delta \mathrm{t}+\mathbf{1} / \mathbf{2} \mathrm{a}_{\mathrm{Y}} \Delta \mathrm{t}^{2}
$$

Angled Projectiles: At the very beginning, the actual velocity is a combination of the Vx and Viy. At the $1 / 2$ way point, you can use the $a_{y}=V_{f y}-V_{\text {iy }} / \Delta \dagger$ because $V_{f y}=\ldots \quad \mathbf{0}$

You need to sketch what is happening so you know what time to use!

1. A cargo plane is flying horizontally at $40 \mathrm{~m} / \mathrm{s}$ at 125 m above the ground. If a package falls out the back of the plane, how many meters will it travel horizontally before landing? ($\approx 202 \mathrm{~m}$)
2. Use Δy equation to find Δt (Viy $=0$!) 2. Use $V x=\Delta x / \Delta t$ to find Δx

3. A skier goes off a ramp with a velocity of $\mathbf{2 0} \mathbf{m} / \mathrm{s}$ at $\mathbf{4 0} \mathbf{0} \mathbf{N}$ of \mathbf{E}.
a. What will his maximum height be off the ground? ($\approx 8.4 \mathrm{~m}$)
4. Find Viy and Vx
5. Use $a_{y}=$ equation to find Δt at $1 / 2$ way $p t$
6. Find Δy at $1 / 2$ way pt

H or A

b. How far away will he land horizontally? ($\approx 40 \mathrm{~m}$)
$V x=\Delta x / \Delta t \quad \ldots$ but you need Δt all the way at the end!

